01
Introduction to VLSI Digital Design
Overview of Digital design methodology, Representations of Digital Design and
understanding of digital systems, logic gates, combinational and sequential logic. Review
HDL’s and RTL implementation of digital logic systems.
02
Semiconductor technologies and CMOS fundamentals
Introduction to semiconductor technologies, logic gates, Review CMOS basics, CMOS
digital design concepts. Understanding CMOS process parameters and characterization of
logic gates.
03
ASIC design flow and design planning
Overview of ASIC/SOC design flow, Digital Design Concepts and Physical Design flow
setup. Review of ASIC fundamentals & fabrication methodologies.
04
ADVANCED DIGITAL DESIGN
a) Introduction to digital design
b) Number representation, complements and Boolean logic
c) Basic logic gates and logic functions
d) Optimization techniques for logic functions
e) Design of combinational circuits.
f) Implementation and analysis of combinational circuits like, adders, comparator,
multiplier etc.
g) Design of synchronous sequential circuits.
h) Implementation and analysis of sequential circuits Flip-Flops, registers, counters, and
simple processor
i) Design of Asynchronous Sequential Circuits
j) Design of Finite State Machines (FSM)
k) Discussion - Special circuits like LFSR, FIFO, barrel shifter etc.
l) Case study – PROTOCOLS LIKE AHB, APB, PCI, UART etc
05
VERILOG HDL
a) Introduction to Verilog HDL.
b) Gate-Level modeling.
c) Dataflow modeling.
d) Operators.
e) Data types.
f) Modeling timing and delays.
g) Behavioral modeling.
h) Parameters, tasks and functions.
i) Compiler directives.
j) System tasks.
k) File input/output.
l) Switch-level modeling.
m) User Defined Primitives.
n) Design examples – FSM, ALU, RAM, ROM, UART, Traffic light signal.
06
SYNTHESIS – ASIC DESIGN FLOW
a) Introduction to ASIC's and ASIC flows
b) Insight into various ASIC design Architecture
c) Writing RTL for ASIC design flow
d) ASIC Design Flow using Synopsys and cadence Tools
e) Using special digital modules in ASIC design
f) Static RAM and Dynamic RAM
g) Clock and Reset managements, power sequencing
h) Clock gating and low power designs
i) Dedicated arithmetic functions
07
DESIGNING STRATEGIES
a) Simulation and synthesis issues.
b) RTL design strategies.
c) Static timing analysis
08
STATIC TIMING ANALYSIS
a) Introduction to STA
b) Comparison with DTA
c) Timing Path and Constraints
d) Different types of clocks
e) Clock domain and Variations
f) Clock Distribution Networks
g) How to fix timing failure
h) Introductions to timing static and dynamic hazards,i) Path delay, Gate delay, Metastability states.
j) Sequential timing delays like set-up time, hold time,
k) Maximum frequency, violations, slew, slack.
l) Delay analysis
m) Sequential logic pad to set up,
n) pad to pad,
o) clk to next Reg,
p) Reg to o/p and
q) Reg to Reg. violations wrt sequential circuit.
09
ASIC design standard cell libraries and flow setup
Design data preparation, process technologies and standard cell libraries. Understanding
of standard cell technology parameters, netlist generation and technology mapping.
Reviewing timing constraints and IO constraints. Low power and low area design
concepts.
10
Review synthesis principles and synthesis of design modules
Implementation of RTL design and synthesis, generating netlist and estimating
performance of synthesized design. Area/timing report checks, design constraints for
synthesis. Efficient synthesis techniques. SDF generation
11
Pre-Layout design partitioning and planning
Design plan for hierarchical and flat design implementation, better partition techniques and flow setup.
Special cells and IO cells usage planning, congestion removal techniques and
implementation constraint setup.
12
Design floor planning and power planning
Understanding various floor planning techniques, setting up guidelines for better floor
planning and meeting design goals. IO PAD placement planning, power planning.
Adding power rings and power mesh.
13
Design Placement
Placement techniques, various optimization techniques to avoid design congestion.
Performing timing analysis at various levels of floor planning. Pre and post placement
optimization technique, setting up placement goals to meet design placement constraints,
fixing placement issues.
14
Clock tree synthesis and timing analysis
Implementation of clock tree in placed design, understanding various aspects of timing
parameters like clock setup/hold, skew and latency issues, Adding buffers in clock tree
and implementing clock tree. Analyzing timing reports after clock tree synthesis and
fixing issues.
15
Routing
Various types of routing, trial route, special route, global routing and detailed routing.
Analyzing routed design checking post routed design issues, DRC checks, timing checks,
optimization of routing constraints.
16
Detailed timing analysis and optimizations, parasitic extraction
Doing complete path and module based timing analysis, checking timing optimizer
reports, identifying failing paths, fixing issues. Extracting capacitor table values for the
design. IR drop and electro migration analysis.
17
Post route design checks and signoff
Perform DRC, Logical Equivalence checking, generating detailed timing/power reports,
generating power reports. GDS-II generation.
18
Project
1. Block Level Projects
2. SoC level full chip design
QuestVLSI Technologies is one of the good institute for VLSI training institutes in Bangalore why because hear so much of experienced people & lab assistants are available. They give very good support to learn something & they teach clearly & efficiently.
Suresh Nathan
January 14, 2020